

Student N	umber:	
Teacher:	CJL HRK SKB	

CRANBROOK SCHOOL

MATHEMATICS EXTENSION 1

2005

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

General Instructions

- Reading time: five minutes
- Working time: two hours
- Calculators may be used.
- The examination consists of 7 questions worth 12 marks each.

Begin a new booklet for each question

All questions should be attempted.

All necessary working should be shown in every question.

A table of standard integrals is provided at the back of this paper.

2

Question 1 (12 marks)
CJL
Marks
(a) Let A be the point (-3,8) and let B be the point (5,-6). Find the coordinates of the point P that divides the interval AB internally in the ratio 1:3.
(b) What is the remainder when the polynomial P(x) = x³ + 3x² - 1 is divided by x - 2?
(c) Use the table of standard integrals to find the exact value of
2
1/√(x² + 9) dx.
3
3

Use the substitution u = x - 1 to evaluate $\int_{1}^{\infty} \frac{x}{(x - 1)^2} dx$.

3

Question 2 (12 marks) CJL Marks

- (a) Sketch the graph of $y = 2\sin^{-1} 3x$ showing clearly the domain and range of the function as well as any intercepts.
- (b) Let $f(x) = 4x^2 1$. Use the definition $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ to find the derivative of f(x) at x = a.
- (c) Find $\frac{d}{dx}(3x^2\cos^{-1}x)$
- $(d) \quad \text{Find } \int 4\cos^2 3x \, dx.$ 2
- (e) Solve the equation $\sin 2\theta = \sqrt{2} \cos \theta$ for $0 \le \theta \le 2\pi$.

Question 3 (12 marks)	HRK	Marks
-----------------------	-----	-------

2

3

1

1

2

1

- (a) Find the acute angle between the lines 3x-4y+3=0 and y=2x-5 to the nearest minute.
- (b) The function $f(x) = \log_e x + 5x$ has a zero near x = 0.2. Using x = 0.2 as a first approximation, use one application of Newton's method to find a second approximation to the zero. Write your answer correct to 3 decimal places.
- (c) (i) Find the natural domain of the function $f(x) = \frac{1}{\sqrt{4-x^2}}$.
 - (ii) The sketch below shows part of the graph of y = f(x). The area under the curve for $0 \le x \le 1$ is shaded.

 Find the area of the shaded region.

- (d) A particle moves in simple harmonic motion about a fixed point O. The amplitude of the motion is 2 m and the period is $\frac{2\pi}{3}$ seconds. Initially the particle moves from O with a positive velocity.
 - (i) Explain why the displacement x, in metres, of the particle at time t seconds, is given by

$$x = 2\sin 3t$$

- (ii) Find the speed of the particle when it is $\sqrt{3}$ m from O.
- (iii) What is the maximum speed reached by the particle?

HRK

Marks

3

(a) Use mathematical induction to prove that

 $1+6+15+...+n(2n-1)=\frac{1}{6}n(4n-1)(n+1)$

for all positive integers n.

(b) The population N, of Keystown first reached 25 000 on 1 January 2000.

The population of Keystown is set to increase according to the equation

$$\frac{dN}{dt} = k(N - 8000)$$

where t represents time in years after the population first reached 25 000

On 1 January 2005, the population of Keystown was 29 250.

- (i) Verify that $N = 8000 + Ae^{kt}$ is a solution to the above equation where A is a constant.
- (ii) Find the values of A and k

Ouestion 4 continues on the next page.

Question 4 (continued)

Marks

1

(c) B Q C A D NOT TO SCALE

In the diagram, R is the midpoint of AB, Q is the midpoint of BC and AB = BC. Point D lies on CE. Let $\angle ADE = \angle ABC = \theta$.

- (i) Explain why ABCD is a cyclic quadrilateral.
- i) Given that P is the centre of the circle that passes through points A, B, C and D, show that BQPR is a cyclic quadrilateral.
- (iii) Show that $\angle APR = \frac{180^{\circ} \theta}{2}$.

Question 6 (12 marks)

Marks

2

2

- (a) If $\sin x = \frac{3}{5}$ and x is acute find the exact value(s) of $\tan \frac{x}{2}$.
- (b) Consider the function f(x) = x(x-2), $x \le a$ where a is a constant
 - (i) Find the values of a given that the inverse function $f^{-1}(x)$ of f(x) exists.
 - (ii) State the domain of $f^{-1}(x)$

1

2

2

(c)

The diagram above shows the graph of the parabola $x^2 = 4ay$. The normal to the parabola at the variable point $P(2at,at^2)$, t > 0, cuts the y-axis at Q. Point R lies on the parabola.

- (i) Show that the equation of the normal to the parabola at P is $x+ty=at^3+2at$
- (ii) Find the coordinates of R given that QR is parallel to the x-axis and $\angle PQR > 90^{\circ}$.
- (iii) Let M be the midpoint of RQ. Find the Cartesian equation of the locus of M.

(a) A particle moves in a straight line with an acceleration given by

$$\frac{d^2x}{dt^2} = 9(x-2)$$

where x is the displacement in metres from an origin O after t seconds. Initially, the particle is 4 metres to the right of O so that x = 4 and has velocity y = -6.

- Show that $v^2 = 9(x-2)^2$.
- (ii) Find an expression for v and hence find x as a function of t.
- (iii) Explain whether the velocity of the particle is ever zero.

Question 6 continues on the next page.

Question 6 (continued)

Marks

(b) Two surveyors A and B standing 2500 metres apart on level ground take the bearing and elevation of a U.F.O. at the same instant. Surveyor A notes the bearing as 009° T and the angle of elevation as 20° , whilst Surveyor A finds the corresponding bearing and elevation to be 351° T and 18° respectively. If the U.F.O. is h metres above the ground:

(i) Prove that
$$h = \frac{2500}{\sqrt{\cot^2 20^0 + \cot^2 18 - 2\cot 20^0 \cot 18^0 \cos 18^0}}$$
.

(ii) Hence evaluate the height, h to the nearest metre.

Quest	tion 7 (12 marks)) SK	В	Mari
(a)	(i)	Write		in the form $R\sin(\theta-\alpha)$ where α	1
	(ii)			he general solutions of to the nearest minute.	3
(b)		ession. Fi		$x^2 + 12x + m = 0$ are in arithmetic value of m and the roots of the	4
(c)	Evalu	ate 「³—	$\frac{dx}{}$ by using the	substitution $x = 3 \tan \theta$.	Δ

2005 CRANBROOK **MATHEMATICS EXTENSION 1** HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION SOLUTIONS

Question 1 (12 marks)

(a)
$$P = \left(\frac{lx_1 + kx_2}{k + l}, \frac{ly_1 + ky_2}{k + l}\right)$$
where $k = 1$, $l = 3$, $x_1 = -3$, $y_1 = 8$, $x_2 = 5$ and $y_2 = -6$.
$$So P = \left(\frac{3 \times -3 + 1 \times 5}{4}, \frac{3 \times 8 + 1 \times -6}{4}\right)$$

$$= \left(-1, 4\frac{1}{2}\right)$$

2 marks	Correct answer
1 mark	Either the x or the y coordinate of P correct

(b)
$$P(x) = x^3 + 3x^2 - 1$$

Using the Remainder Theorem,
 $P(2) = 8 + 12 - 1$
= 19
The remainder is 19.

.2 marks	Correct answer
1 mark	Correct method with an arithmetic mistake

(c) From the table of standard integrals, we have
$$\int_{0}^{1} \frac{1}{\sqrt{x^{2}+9}} dx = \left[\ln \left(x + \sqrt{x^{2}+9} \right) \right]_{0}^{1}$$

$$= \ln \left(1 + \sqrt{10} \right) - \ln (0+3)$$

$$= \ln \frac{1 + \sqrt{10}}{3}$$

2 marks	Correct answer	
1 mark	Correct first line above	· · · · · · · · · · · · · · · · · · ·

Question 1 (continued)

Method 1 Multiplying both sides by $(x+5)^2$

$$\frac{2}{x+5} \le 1, \qquad x \ne -5$$

$$2(x+5) \le (x+5)^2$$

$$2x+10 \le x^2 + 10x + 25$$

$$0 \le x^2 + 8x + 15$$

$$0 \le (x+5)(x+3)$$

From the graph of y = (x+5)(x+3) we see that $y \ge 0$ for $x \le -5$ or $x \ge 3$ but $x \ne -5$ from above so x < -5 or $x \ge 3$.

=(x+5)(x+3)	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
-5 -3	->

3 marks	Correct answer
2 marks	Correct method but with one mistake
1 mark	Finds either of the critical points $x = -5$ or $x = -3$ or states that $x \neq -5$

Method 2 Critical points method

$$\frac{2}{x+5} \le 1, \quad x \ne -5$$

Consider
$$\frac{2}{x+5} = 1$$

$$x = -3$$

Look at the number line

For
$$x = -6$$
, $\frac{2}{-6+5} \le 1$

For
$$x = -4$$
, $\frac{2}{-4+5} \ge 1$

For
$$x = -1$$
, $\frac{2}{-1+5} \le 1$

So
$$\frac{2}{x+5} \le 1$$
 for $x \le -5$ or $x \ge 3$, but $x \ne -5$

So
$$x < -5$$
 or $x \ge 3$

3 marks	Correct answer
2 marks	Correct method but with one mistake
1 mark	Finds either of the critical points $x = -5$ or $x = -3$ or states that

x ≠ -5

Question 1 (continued)

Method 3 Consider the cases where x+5>0 and x+5<0

$$\frac{2}{x+5} \le 1, x \ne -5$$
Now, $2 \le x+5$ if $x+5 > 0$
 $x \ge -3$ if $x > -5$
So $x \ge -3$
Also, $2 \ge x+5$ if $x+5 < 0$
 $x \le -3$ if $x < -5$
So $x < -5$
So $x < -5$

3 marks	Correct answer
2 marks	Correct method but with one mistake
1 mark	Finds either of the critical points $x = -5$ or $x = -3$ or states that
	$ x \neq -5 $

(e)
$$\int_{2}^{4} \frac{x}{(x-1)^{2}} = \int_{1}^{3} (u+1)u^{-2} \frac{du}{dx} dx \qquad \text{where } u = x-1,$$

$$= \int_{1}^{3} (u^{-1} + u^{-2}) du \qquad \frac{du}{dx} = 1,$$

$$= \left[\log_{e} u - u^{-1} \right]_{1}^{3} \qquad \text{and } x = u+1$$

$$= \left[\log_{e} 3 - \frac{1}{3} \right] - \left(\log_{e} 1 - 1 \right) \qquad \text{and } x = 2 \text{ so } u = 1$$

$$= \log_{e} 3 + \frac{2}{3} \qquad \text{(since } \log_{e} 1 = 0)$$

3 marks	Correct answer
2 marks	Finds correct integrand and terminals OR
	Follows correct method but forgets to change terminals
1 mark	Finds correct terminals OR finds correct integrand

Question 2 (12 marks)

(a) The function $y = 2\sin^{-1} 3x$ is defined for

$$-1 \le 3x \le 1$$
$$-\frac{1}{3} \le x \le \frac{1}{3}$$

The coefficient 2 has the effect of stretching vertically the basic graph of $y = \sin^{-1} 3x$ by a factor of 2.

Since the graph of $y = \sin^{-1} 3x$ has a range of $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, the graph of $y = 2\sin^{-1} 3x$ has a range of $-\pi \le y \le \pi$.

2 marks	Showing correct graph with endpoints clearly marked	
1 mark	Correct shape of graph without clearly marked endpoints	

Question 2 (continued)

(b)
$$f(x) = 4x^{2} - 1$$

$$f(a) = 4a^{2} - 1$$

$$f(a+h) = 4(a+h)^{2} - 1$$

$$= 4a^{2} + 8ah + 4h^{2} - 1$$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{4a^{2} + 8ah + 4h^{2} - 1 - 4a^{2} + 1}{h}$$

$$= \lim_{h \to 0} \frac{8ah + 4h^{2}}{h}$$

$$= \lim_{h \to 0} \frac{h(8a + 4h)}{h}$$

$$= \lim_{h \to 0} (8a + 4h)$$

$$= 8a$$

2 marks	Correct derivation
1 mark	Correct substitution into definition

(c)
$$\frac{d}{dx} (3x^2 \cos^{-1} x) = 6x \cos^{-1} x + 3x^2 \times \frac{-1}{\sqrt{1 - x^2}}$$
 (Product rule)
$$= 6x \cos^{-1} x - \frac{3x^2}{\sqrt{1 - x^2}}$$

2 marks	Correct answer
1 mark	Reasonable attempt to use product rule OR
	Showing $\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$

(d)
$$\int 4\cos^2 3x \, dx = 4 \int \left(\frac{1}{2} + \frac{1}{2}\cos 6x\right) dx$$
 since $\cos^2 \theta = \frac{1}{2} + \frac{1}{2}\cos 2\theta$
= $4\left(\frac{x}{2} + \frac{1}{12}\sin 6x\right) + c$
= $2x + \frac{1}{3}\sin 6x + c$

2 marks	Correct answer
1 mark	Correct substitution of identity for $\cos^2 3x$

Question 2 (continued)

(e)
$$\sin 2\theta = \sqrt{2}\cos\theta$$

$$2\sin\theta\cos\theta = \sqrt{2}\cos\theta$$

$$\sqrt{2}\sin\theta\cos\theta - \cos\theta = 0$$

$$\cos\theta(\sqrt{2}\sin\theta - 1) = 0$$

$$\cos\theta = 0 \qquad \sin\theta = \frac{1}{\sqrt{2}}$$

$$\theta = \frac{\pi}{2}, \frac{3\pi}{2} \qquad \theta = \frac{\pi}{4}, \frac{3\pi}{4}$$

4 marks	Four correct answers	
3 marks	Correct factorisation and finding $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$ OR	
	Correct factorisation and finding $\theta = \frac{\pi}{4}, \frac{3\pi}{4}$	
2 marks	Correct factorisation	
1 mark	Correct replacement of $\sin 2\theta$	

Question 3 (12 marks)

(a) For
$$3x - 4y + 3 = 0$$
 $m_1 = \frac{3}{4}$ and for $y = 2x - 5$ $m_2 = 2$.

Now for acute angle θ between lines: $\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$

$$\therefore \tan \theta = \frac{\left| \frac{3}{4} - 2 \right|}{1 + \frac{3}{4} \times 2} \qquad \therefore \tan \theta = \frac{1}{2} \qquad \therefore < \theta = 26^{\circ}34' \text{ (to nearest minute)}.$$

2 marks Correct answer		Correct answer
	1 mark	Determining correct gradients and stating correct formula.

Question 3 (continued)

Now, $f(x) = \log_e x + 5x$ $f'(x) = \frac{1}{x} + 5$ and $x_0 = 0.2$ Using Newton's method $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $= 0.2 - \frac{\log_e 0}{10.2} + 5$

= 0.261	(correct	to 3	decimal	places)
---------	----------	------	---------	---------

3 marks	cs Correct answer	
2 marks Finds $f(0.2)$ and $f'(0.2)$ correctly and substitutes into form		
1 mark	Correctly evaluates $f'(0\cdot 2)$	

(c) (i) Method 1

Because of the square root sign, $4-x^2 \ge 0$ so $-2 \le x \le 2$. Also however, because $\sqrt{4-x^2} \ne 0$, $x \ne -2$, 2. So the natural domain of f is -2 < x < 2.

1 mark	Correctly 1	easoned	answer	

Method 2

Sketch the graph.

The natural domain of f is -2 < x < 2

	4 . 1.			
4	1 mark	Correct answer and correct graph		
-1	TAMERICA	COLLOG MID II OF MING COLLOGE BEADIN		

Question 3 (continued)

(ii) Area =
$$\int_{0}^{1} \frac{1}{\sqrt{4 - x^2}} dx$$
$$= \left[\sin^{-1} \left(\frac{x}{2} \right) \right]_{0}^{1}$$
$$= \sin^{-1} \frac{1}{2} - \sin^{-1} 0$$
$$= \frac{\pi}{6}$$

Area required is $\frac{\pi}{6}$ square units.

2 marks	Correct answer
1 mark	Correct first line above

(d) (i) The particle starts from the centre of motion and moves with positive velocity so the general form of the displacement time function is $x = a \sin nt$.

Now
$$a = 2$$
 and period $= \frac{2\pi}{n}$
so $n = 3$

So the required equation is $x = 2\sin 3t$ as required.

	~	
l 1 mark	Correctly derived equation	
1 I mark	Confecuty derived subalion	
	,	

Question 3 (continued)

(ii)
$$x = 2\sin 3t$$
When
$$x = \sqrt{3},$$

$$\sin 3t = \frac{\sqrt{3}}{2}$$

$$3t = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{7\pi}{3}, \dots$$

$$t = \frac{\pi}{9}, \frac{2\pi}{9}, \frac{7\pi}{9}, \dots$$
Now
$$x = 2\sin 3t$$

$$\frac{dx}{dt} = 6\cos 3t$$
When
$$t = \frac{\pi}{9},$$

$$\frac{dx}{dt} = 6\cos \frac{\pi}{3}$$

$$= 3$$
(Check when
$$t = \frac{2\pi}{9},$$

$$\frac{dx}{dt} = 6\cos \frac{2\pi}{3}$$

$$= 6 \times -\frac{1}{2}$$

$$= -3$$

$$\text{speed} = |-3|$$

$$= 3$$

So speed is 3 m s⁻¹.

2 marks	Correct answer
1 mark	Finding correct values of t when particle is $\sqrt{3}$ m from O OR Substituting incorrect value of t into correct expression for $\frac{dx}{dt}$ OR Giving an answer of $-3 \mathrm{m s^{-1}}$

Ouestion 3 (continued)

(iii) Method 1

For SHM the maximum speed occurs at the centre of motion i.e. at O.

For STM the maximum speed occurs at the centre of motion i.e. at
$$O$$

$$x = 2 \sin 3t$$

$$0 = 2 \sin 3t$$

$$3t = 0, \pi, 2\pi...$$

$$t = 0, \frac{\pi}{3}, \frac{2\pi}{3}, ...$$

$$\frac{dx}{dt} = 6 \cos 3t$$
When $t = 0$,
$$\frac{dx}{dt} = 6 \cos 0$$

$$= 6$$

$$Check when $t = \frac{\pi}{3}$,
$$\frac{dx}{dt} = 6 \cos \pi$$

$$= -6$$

$$Speed = |-6|$$

$$= 6$$$$

Maximum speed reached by particle is 6 m s⁻¹

1 mark Correct answer

Maximum speed occurs when $\frac{d^2x}{dx^2} = 0$

$$\frac{d^2x}{dt^2} = -18\sin 3t$$

$$0 = -18\sin 3t$$

$$3t = 0, \pi, 2\pi, \dots$$

$$t = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \dots$$

$$\frac{dx}{dt} = 6\cos 3t$$
(Check when $t = \frac{\pi}{3}$,
$$\frac{dx}{dt} = 6\cos \pi$$
When $t = 0$,
$$\frac{dx}{dt} = 6\cos \pi$$

$$= -6$$
Speed = $|-6|$

$$= 6$$

Maximum speed reached by particle is 6 m s⁻¹.

1 4-1-4	. ~	
1 mark	Correct answer.	

Question 4 (12 marks)

Prove that $1+6+15+...+n(2n-1)=\frac{1}{6}n(4n-1)(n+1)$ using mathematical induction

When
$$n = 1$$
, $RHS = \frac{1}{6} \times 3 \times 2$
= 1
= LHS

So the statement is true for n = 1

Suppose that it is true for n = k.

That is, suppose that
$$1+6+15+...+k(2k-1)=\frac{1}{6}k(4k-1)(k+1)$$
 - (A)

Then, when n = k + 1, we have

$$1+6+15+...+(k+1)\{2(k+1)-1\} = \frac{1}{6}(k+1)\{4(k+1)-1\}\{(k+1)+1\}$$
$$= \frac{1}{6}(k+1)(4k+3)(k+2)$$

$$LHS = 1 + 6 + 15 + \dots + (k+1)\{2(k+1) - 1\}$$

$$= 1 + 6 + 15 + \dots + k(2k-1) + (k+1)\{2(k+1) - 1\}$$

$$= \frac{1}{6}k(4k-1)(k+1) + (k+1)(2k+1) \qquad \text{from } (A)$$

$$= (k+1)\left\{\frac{1}{6}k(4k-1) + (2k+1)\right\}$$

$$= (k+1)\left\{\frac{1}{6}k(4k-1) + \frac{1}{6}(12k+6)\right\}$$

$$= \frac{1}{6}(k+1)\left\{4k^2 - k + 12k + 6\right\}$$

$$= \frac{1}{6}(k+1)(4k+3)(k+2)$$

$$= RHS$$

It is true for n = 1 and when it is true for n = k it has been proven that it is true for n = k + 1. Hence by mathematical induction it must be true for all positive integers n.

3 marks	Shows correct proof	
2 marks	Shows proof for $n = 1$ AND shows correct assumption statement	
	for $n = k$ and substitutes $n = k + 1$ correctly into the expression	
1 mark	One of either of the points mentioned immediately above	

Question 4 (continued)

(ii)

b) (i) Consider
$$\frac{dN}{dt} = k(N-8000)$$

$$LS = \frac{dN}{dt}$$

$$= \frac{d}{dt}(8000 + Ae^{kt})$$

$$= Ake^{kt}$$

$$RS = k(N-8000)$$

$$= k(8000 + Ae^{kt} - 8000)$$

$$= Ake^{kt}$$

$$= LS$$

Have verified.

1 mark	Shows that $N = 8000 + Ae^{kt}$ satisfies the differential equation
	OR Finds the general solution to the differential equation

When
$$t = 0$$
, $N = 25000$
So, $25000 = 8000 + Ae^0$
 $A = 17000$
When $t = 5$, $N = 29250$
So, $29250 = 8000 + 17000e^{5k}$
 $21250 = 17000e^{5k}$
 $1 \cdot 25 = e^{5k}$
 $5k = \log_e 1 \cdot 25$
 $k = 0 \cdot 2\log_e 1 \cdot 25$

So $A = 17\,000$ and $k = 0.2 \log_e 1.25$

2 marks	Correct answers for A and k
1 mark	Correct answer for A OR
	Correct answer for k

Question 4 (continued)

(ii)

(c) (i) $\angle ADE = \angle ABC = \theta$ and hence ABCD is a cyclic quadrilateral because the exterior angle at a vertex of a cyclic quadrilateral equals the interior opposite angle.

 	 	~~~~~~~~~~
Correct answer	 	

B Q C NOT TO SCALE

Since P is the centre of the circle that passes through the points A, B, C and D, then QP is the perpendicular bisector of BC and PR is the perpendicular bisector of AB.

(The line from the centre of a circle to the midpoint of a chord is perpendicular to the chord.)

So  $\angle BQP = \angle BRP = 90^{\circ}$ 

So BQPR is a cyclic quadrilateral. (The opposite sides of a cyclic quadrilateral are supplementary).

2 marks	Correct reasoning
1 mark	Stating with reasons that QP and PR are the perpendicular
	bisectors of BC and AB respectively.

## Question 4 (continued)

(iii)



Now, 
$$\angle QPR = 180^{\circ} - \theta$$

(Opposite sides of a cyclic quadrilateral are supplementary.

and 
$$\angle APC = 2\theta$$

(A, B and C lie on a circle and the angle at the centre of a circle is twice the angle at the circumference subtended by the same arc.

Also, 
$$PQ = PR$$

(Equal chords are equidistant from the centre of the circle.)

$$CQ = AR$$

(Since AB = BC and R and Qare respective midpoints.)

$$AP = CP$$

(Radii of a circle are equal.)

So 
$$\triangle APR \equiv \triangle CPQ$$

(Three pairs of sides are equal in length.)

So 
$$\angle CP\dot{Q} = \angle APR$$

Now,  $\angle QPR + \angle CPQ + \angle CPA + \angle APR = 360^{\circ}$ 

So, 
$$180^{\circ} - \theta + \angle APR + 2\theta + \angle APR = 360^{\circ}$$

$$\angle APR = \frac{180^{\circ} - \theta}{2}$$

as required.

3marks	Correct reasoning including showing $\triangle APR \equiv \triangle CPQ$
2 marks	Showing congruence correctly but incorrectly reasoning the rest of the case
1 mark	Showing correct reasoning without showing $\triangle APR = \triangle CPQ$

#### Question 5 (12 marks)

(a) If 
$$t = \tan \frac{x}{2}$$
,  $x \neq \pi$  then  $\sin x = \frac{2t}{1+t^2}$ .

$$\therefore \frac{3}{5} = \frac{2t}{1+t^2}$$

$$3t^2 - 10t + 3 = 0$$

$$3t^{2} - 10t + 3 = 0$$
  
$$3t^{2} - 10t + 3 = 0$$
  
$$3t^{2} - 1(t - 3) = 0$$

$$\therefore t = \frac{1}{3} \text{ or } 3$$

$$\therefore \tan \frac{x}{2} = \frac{1}{3} \text{ or } 3$$

But as x is acute  $\tan \frac{x}{2} \neq 3$  ...  $\tan \frac{x}{2} = \frac{1}{3}$  only.

3 marks	Correct derivation of answer
2 marks	Gives both answers for $\tan \frac{x}{2}$
1 mark	Uses a correct t result as part of the solution

#### Question 5 (continued)

(b) (i) The inverse function  $f^{-1}(x)$  exists if the graph of y = f(x) is 1:1.

From the graph we see that f(x) is not a 1:1 function.

That is, a horizontal line can be drawn that will cut the graph at more than one point.



One of the turning points is (2,0). Find the other turning point.

$$y = x(x-2)^{2}$$

$$= x^{3} - 4x^{2} + 4x$$

$$\frac{dy}{dx} = 3x^{2} - 8x + 4$$

$$= (3x-2)(x-2)$$
So,  $(3x-2)(x-2) = 0$ 

$$x = \frac{2}{3} \text{ or } x = 2$$

So 
$$f^{-1}(x)$$
 exists if  $a \le \frac{2}{3}$ .

2 marks	Correct answer
1 mark	Giving answer $a \le \frac{2}{3}$ OR
	Giving an incorrect inequality as an answer after an arithmetic mistake in the differentiation or solution to the quadratic
	inistake in the differentiation of solution to the quadratic

(ii) The domain of 
$$f(x)$$
 is  $x \le \frac{2}{3}$ .  
The range of  $f(x)$  is  $y \le \frac{32}{27}$ .  
(Since  $f(\frac{2}{3}) = \frac{2}{3}(\frac{2}{3} - 2)^2$ .  
 $= \frac{32}{27}$ )

So the domain of  $f^{-1}(x)$  is  $x \le \frac{32}{27}$ .

i	1 1	G ,	
i	1 mark	Correct answer	
Ų		10 122 111 122	 

#### Question 5 (continued)

(c) (i) Method 1 – Using the Cartesian equation  $x^{2} = 4ay$   $2x = 4a\frac{dy}{dx} \qquad \text{(implicit differentiation)}$   $\frac{dy}{dx} = \frac{x}{2a}$ At  $P(2at, at^{2})$ , dy = 2at

$$\frac{dy}{dx} = \frac{2at}{2a}$$

$$= t$$

So the gradient of the normal at P is  $-\frac{1}{t}$ .

Equation of the normal at P:

$$y - at^{2} = -\frac{1}{t}(x - 2at)$$

$$ty - at^{3} = -x + 2at$$

 $x + ty = at^3 + 2at$  as required

2 marks	Derives correct gradient of normal AND
	Derives correct equation of normal
1 mark	Derives correct gradient of normal

Method 2 - Using parametric equations

At 
$$P(2at, at^2)$$
,

$$x = 2at$$
 and  $y = at^2$ 

$$\frac{dx}{dt} = 2a \qquad \frac{dy}{dt} = 2at$$
So 
$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} \quad \text{(Chain rule)}$$

$$= 2at \cdot \frac{1}{2a}$$

$$= t$$

So the gradient of the normal at P is  $-\frac{1}{t}$ .

Equation of the normal at P:

$$y - at^2 = -\frac{1}{t}(x - 2at)$$

$$ty - at^3 = -x + 2at$$

$$x + ty = at^3 + 2at$$
 as required

	$\lambda + iy = 0$	at 1 zat as ioquitod
	2 marks	Derives correct gradient of normal AND
ı		Derives correct equation of normal
	1 mark	Derives correct gradient of normal

#### Question 5 (continued)

(ii) The normal at P passes through Q which lies on the y-axis.

Now, 
$$x + ty = at^3 + 2at$$
,

when 
$$x = 0$$
,  $y = at^2 + 2a$ 

So Q and therefore R have a y-coordinate of  $y = at^2 + 2a$ .

Since R lies on the parabola, substitute  $y = at^2 + 2a$  into  $x^2 = 4ay$ .

$$x^{2} = 4a(at^{2} + 2a)$$
$$= 4a^{2}t^{2} + 8a^{2}$$
$$= 4a^{2}(t^{2} + 2)$$

Since  $\angle PQR > 90^{\circ}$ 

$$x = -2a\sqrt{t^2 + 2}$$

If 
$$\angle PQR < 90^{\circ}$$
,  $x = 2a\sqrt{t^2 + 2}$ 

So R has coordinates  $\left(-2a\sqrt{t^2+2}, at^2+2a\right)$ 

2 marks	Finding two correct coordinates
1 mark	Finding one correct coordinate

(iii) 
$$M = \left(\frac{-2a\sqrt{t^2 + 2} + 0}{2}, \frac{at^2 + 2a + at^2 + 2a}{2}\right)$$

$$= \left(-a\sqrt{t^2 + 2}, at^2 + 2a\right)$$

$$x = -a\sqrt{t^2 + 2}$$

$$y = at^2 + 2a$$
So 
$$x = -a\sqrt{\frac{y - 2a}{a} + 2}$$

$$= -a\sqrt{\frac{y - 2a + 2a}{a}}$$

$$x = -a\sqrt{\frac{y}{a}} \text{ is the Cartesian equation of the locus of } M.$$

$$(x = -\sqrt{ay} \text{ is also an acceptable equation})$$

2 marks	Correct equation				
1 mark	Correct coordinates	of $M$	 		

#### Question 6 (12 marks)

a) (i) 
$$\frac{d^2x}{dt^2} = 9(x-2)$$

$$\frac{d\left(\frac{1}{2}v^2\right)}{dx} = 9(x-2)$$

$$\frac{1}{2}v^2 = 9\int (x-2)dx$$

$$= 9\left(\frac{x^2}{2} - 2x\right) + c$$
Initially  $x = 4$  and  $y = -6$ 
So,  $18 = 9(8-8) + c$ 

$$c = 18$$

$$\frac{1}{2}v^2 = 9\left(\frac{x^2}{2} - 2x\right) + 18$$

$$v^2 = 9x^2 - 36x + 36$$

$$= 9(x^2 - 4x + 4)$$

$$= 9(x-2)^2$$
as required

2 marks	Correct integration AND
	Correct evaluation of c
1 mark	Statement that $\frac{d\left(\frac{1}{2}v^2\right)}{dx} = 9(x-2)$

#### Question 6 (continued)

(ii) From (i), 
$$v^2 = 9(x-2)^2$$
  
So  $v = \pm 3(x-2)$ , but  
when  $t = 0$ ,  $x = 4$  and  $v = -6$ .  
So,  $v = -3(x-2)$   
So,  $\frac{dx}{dt} = -3(x-2)$   

$$t = -\frac{1}{3} \int \frac{1}{x-2} dx$$

$$= -\frac{1}{3} \log_e(x-2) + c$$

$$t = 0, x = 4$$

$$0 = -\frac{1}{3} \log_e 2 + c$$

$$t = \frac{1}{3} \log_e 2 + c$$

$$t = 2 \log_e 2$$

2 marks	Correct expression for $x(t)$	
1 mark	Correct expression for $v(x)$	

(iii) From (ii), 
$$v = -3(x-2)$$
  
If  $v = 0$ ,  $0 = -3(x-2)$   
So  $x = 2$   
From (ii) also,  $x = 2(1 + e^{-3t})$   
If  $x = 2$ ,  $2 = 2(1 + e^{-3t})$   
 $e^{-3t} = 0$  which has no solution.

So v is never zero.

Alternatively, the graph of  $x = 2(1 + e^{-3t})$  has an asymptote of x = 2 and so  $x \ne 2$  so  $y \ne 0$ .

2 marks	Correct explanation involving $v(x)$ and $x(t)$
1 mark	Correct explanation only as far as involving $v(x)$

#### Question 6 (continued)

$$\therefore 2500^2 = x^2 + y^2 - 2xy \cos 18^0 \dots 3.$$

Sub. 1 and 2 into 3:

 $2500^2 = h^2 \cot^2 20^0 + h^2 \cot^2 18^0 - 2h \cot 20^0 \times h \cot 18^0 \cos 18^0$ 

$$\therefore 2500^2 = h^2 (\cot^2 20^0 + \cot^2 18^0 - 2\cot 20^0 \cot 18^0 \cos 18^0)$$

$$\therefore h = \frac{2500}{\sqrt{\cot^2 20^0 + \cot^2 18^0 - 2\cot 20^0 \cot 18^0 \cos 18^0}}$$

4 marks	Correct derivation.
3 marks	Derivation to second last equation.
2 marks	Listing of the three equations needed in derivation.
1 mark	Listing of at least two of the equations needed in the
	derivation.

(ii) h = 2583.015192...

 $\therefore$  height,  $h = 2583 \,\mathrm{m}$  (to nearest metre)

	Finds correct answer	
1 mark	Does not round off correctly to nearest metre.	

Question 7 (12 marks)

(a) (i) 
$$8 \sin \theta - 15 \cos \theta = R[\frac{8}{R} \sin \theta - \frac{15}{R} \cos \theta]$$
  
where  $R = \sqrt{8^2 + (-15)^2} = 17$ .

$$\therefore 8\sin\theta - 15\cos\theta = 17\sin(\theta - \alpha)$$

where 
$$\cos \alpha = \frac{8}{17}, \sin \alpha = \frac{15}{17}$$

such that 
$$\tan \alpha = \frac{15}{8}$$
 and  $\alpha = \tan^{-1} \frac{15}{8}$  for acute  $\alpha$ .

$$\therefore 8\sin\theta - 15\cos\theta = 17\sin(\theta - \tan^{-1}\frac{15}{8}).$$

1 mark	Correct derivation			

(ii) If 
$$8\sin\theta - 15\cos\theta = \frac{-17\sqrt{3}}{2}$$
  
then  $17\sin(\theta - \tan^{-1}\frac{15}{8}) = \frac{-17\sqrt{3}}{2}$ 

$$\sin(\theta - \tan^{-1}\frac{15}{8}) = \frac{-\sqrt{3}}{2}$$

$$\sin(\theta - \tan^{-1}\frac{15}{8}) = \sin(-60^{\circ})$$

$$\theta - \tan^{-1}\frac{15}{8} = 180^{\circ}n + (-1)^{n}(-60^{\circ})$$

$$\theta = 180^{\circ}n + (-1)^{n}(-60^{\circ}) + 61^{\circ}56' \text{ to the nearest minute}$$
where  $n$  is any integer.

3 marks	Correct derivation
2 marks	Correctly finding $\theta$ but not qualifying what $n$ is.
1 mark	Correct to 3 rd last line of working.

(b) Let the roots of 
$$x^3 - 12x^2 + 12x + m = 0$$
 be a-d, a, a+d.  
Now sum of roots = a-d + a + a+d  
= 3a  
= 12  
 $\therefore a = 4$ 

⇒ 
$$x = 4$$
 is a root and  $P(4) = 0$  where  $P(x) = x^3 - 12x^2 + 12x + m$ .  
∴  $0 = 64 - 192 + 48 + m$ 

$$0 = -80 + m$$

$$m = 80$$

Now 
$$P(x) = x^3 - 12x^2 + 12x + 80$$
  
and the product of the roots  $= (a-d) a (a+d)$   
 $= a(a^2 - d^2)$   
 $= 4(16 - d^2)$   
 $= -80$   
 $\therefore 16 - d^2 = -20$   
 $\therefore d^2 = 36$   
 $\therefore d = \pm 6$ 

(c) 
$$I = \int_0^3 \frac{dx}{9 + x^2} \qquad \text{letting } x = 3 \tan \theta \qquad \therefore \frac{dx}{d\theta} = 3 \sec^2 \theta$$

when 
$$x = 0$$
  $\theta = 0$   
 $x = 3$   $\theta = \frac{\pi}{4}$ 

 $\Rightarrow$  roots are -2, 4 and 10.

<i>:.</i>	$I = \int_0^{\frac{\pi}{4}} \frac{3\sec^2\theta \ d\theta}{9 + 9\tan^2\theta}$
	$= \int_0^{\frac{\pi}{4}} \frac{3\sec^2\theta \ d\theta}{9(1+\tan^2\theta)}$
	$= \int_0^{\frac{\pi}{4}} \frac{3\sec^2\theta \ d\theta}{9\sec^2\theta}$
	$=\int_0^{\frac{\pi}{4}}\frac{1}{3}d\theta$

$$= \left[\frac{\theta}{3}\right]_0^{\frac{\pi}{4}}$$

$$= \frac{\pi}{12}$$

Correct derivation  Correctly derived to third last line of working.  Correctly derived to fifth last line of working.  Correctly finding $\frac{dx}{d\theta}$ and changing the values of the lin with respect to $\theta$ .
4 marks 3 marks 2 marks 1 mark